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Abstract

A new method of determining the opening and shearing modal components of the total strain energy release rate
during crack extension is described. The method is based on suppressing one mode at a time over a certain length
downstream of the crack tip (b) and letting the crack extend by a certain amount (Aa) with this condition maintained
over the length b + Aa. The modal components thus obtained, however, do not add up to the total strain energy release
rate (G) and are also dependent on the length . These approximate values and the total strain energy release rate are
used as a starting point to obtain the modal components that would add up to the total G and are not associated with
any particular . Numerical examples of cracks in homogeneous media and those along bi-material interfaces are
presented to illustrate the methodology and the relative independence of the results of the mesh size and the length of Aa
selected. It appears that the modal components thus obtained are rationally based global parameters which are de-
terminable without considering local crack-tip stress distribution. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Strain energy release rate; Mode separation; Opening and shearing modes; Displacement-based approach; Bi-material
interfaces

1. Introduction

Prediction of delamination growth along a bi-material interface is currently based on semi-empirical
procedures. There appears to be no well established, rational procedure for the computation of the modal
components Gy and Gy of strain energy release rate in the case of bi-material cracks to help assess the risk of
delamination growth. This problem has assumed greater urgency in recent times because of the extensive
use of sandwich composites in ship structures in which a frequent mode of failure is separation of the stiff
facing sheets and the relatively soft core. In the present study a consistent displacement-based approach is
presented for achieving the mode separation. Though based on the approach previously presented by
Johnson and Sridharan (1999), the present approach corrects for some inconsistencies thereof.
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Nomenclature

E\i, Ex», Ey; modulus of elasticity of a composite lamina in the fiber, in-plane transverse and out of
plane normal directions respectively.

G total strain energy release rate

Gy, G, opening and shear modal components of G as given by the crack-closure integrals

Gy, Gy opening and shear modal components of G as given by the displacement-based method

G{, Gf; values of Gy, Gy before correction

G2, Gi3, Gy; in-plane shear modulus and out of plane shear moduli

a length of the crack

b distance over which the crack is conditioned prior to crack extension
h mesh size in the direction of the crack

i, O relative crack displacements in the opening and shearing mode

Aa crack extension

1 total potential energy of the structure

0y, Ty, nhormal and shearing stresses over the crack surface prior to crack extension

1.1. Mode separation techniques: a commentary

1.1.1. Crack-closure integrals

Crack-closure integrals are a popular tool for the computation of total strain energy release rates
(SERR) as well as its modal components and are attributed to Irwin (1957). For the interface crack geo-
metry shown in Fig. 1, the energy release rate, G, can be expressed in the form:

) 1 Aa ~ . 1 Aa _
G’hli%m/o ay(x)v(x)dx—i—hll%m/o Ty ()2 (x) dx (1)

where ¢, and t,, are the stresses upstream of the crack tip, # and ¢ are the relative sliding and opening
displacements between points facing each other on the crack faces after the crack extension and Aa is the
crack extension. The first term gives the contribution of the opening mode (mode I), G| and the second term
is that of the shear mode (mode II), G,. (Note arabic subscripts 1 and 2 have been used for the results
obtained from crack-closure integrals, the roman ones being reserved for displacement-based values.) In the
context of finite element analysis, this can be expressed in terms of nodal forces on the upstream of the
crack prior to crack extension and the corresponding crack opening displacements after the crack extension
(Rybicki and Kanninen, 1977; Raju et al., 1998).

For a bi-material crack the crack-closure integrals have been shown not to converge (Sun and Jih, 1987)
although the sum G = G, + G, does converge and is well defined. A number of attempts have been made to
extract reasonable estimates of the modal contributions using crack-closure integrals. One of these methods
involves inserting a thin homogeneous layer of resin between the layers forming the interface and placing
the crack with in it (Atkinson, 1977). This involves considerable additional computational effort to retrieve
the stresses and the SERR components, as the stresses may retain considerable mesh-sensitivity if the resin
layer is extremely thin. Davidson (1994) has suggested changing the Poisson ratio of one of the layers so
that a key bi-material parameter ¢ which is the source oscillatory behavior becomes zero. The implications
of such a change are not clear and the consistent accuracy of the results obtained have not been established.
It has been observed that a relatively large crack extension retrieves results which are physically meaningful
(Davidson, 1994; Rice, 1968) and helps to mitigate the influence of oscillatory nature of stress variations
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b Mode I crack growth
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Model 1 :: Crack length a
Model 2 :: Crack length a +Aa
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Fig. 1. (a) The three models and the corresponding scenarios of crack extension (Aa = Ab). (b) Numerical integration scheme (A, the
origin is at the free end and X runs towards the crack tip).

near the crack tip. Finally, there have been approaches where the oscillatory component can be identified
and discarded to obtain consistent values of mode mixity (Beuth, 1996). Even though such an approach
would lead to results which are not mesh-sensitive, the validity of the results are open to question. For a
problem involving two dissimilar isotropic materials, this approach would lead to G; = G, [5] — a result
which will be seen to be erroneous.

1.2. Displacement-based approach

A displacement-based method has been developed for obtaining the strain energy release rate (SERR, G)
and its modal components (G; and Gyr) by Johnson and Sridharan recently for two-dimensional problems
(Johnson and Sridharan, 1999). A brief description of the technique is given below as a necessary intro-
duction to the theme of this paper.

1.2.1. Total SERR, G

For the purpose of illustration, consider once again Fig. 1 which shows an interfacial crack starting from
the “free” edge of a cantilever beam. The beam carries a load of given magnitude acting at a given location.
a is the length of the crack. This arrangement is designated as Model 1. Next consider a companion model
with a crack length of a + Aa with the same load. This is designated as Model 2.
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The following potential energy calculations are performed for a given value of P, viz. P

(1) The potential energy of Model 1, H(l’ (State (1)).
(ii) The potential energy of Model 2, IT) (State (ii)).

The subscripts 1 and 2 correspond to models with crack length @ and a + Aa respectively. The superscript 0
refers to the fact no constraints are being imposed.
The potential energy is given in terms of external load P and the corresponding deflections 9:

= /0 P(5)ds — PS (2)

where ¢ is the displacement corresponding to load P. The first term gives the strain energy as the work done
by external load P as it increases from 0 to P. The total strain energy release rate, G, is given by:

_ (M -113)
O 3)

For a linear problem, G is given by G = (1/2)Pd, where 4 gives the difference between the displacements, 8,
and 6, corresponding to P of the two models.

1.2.2. Modal components
To find the modal components of G, we go through two complementary sequences of steps. In Sequence
I, the potential energies are determined, under the following two conditions:

(iii) The crack tip of Model 1 is conditioned over the length » downstream of the crack, (Fig. 2) to
suppress shear mode, by stipulating the relative displacements of the delaminated surfaces to be zero, i.e.
i=0.

Compute the potential energy under this condition for the given load, IT } (State (iii)).

The superscript 1 indicates that crack is conditioned for mode I extension by eliminating u.

(iv) Consider now Model 2, with the crack conditioned likewise, but over the length b + Aa (Aa = Ab).
Compute the potential energy under this condition, IT} (State (iv)).

These potential energies will give an estimate of strain-energy release rate in mode I, viz. G{. Thus we have
1 1

(1, — 1)
Aa

Note that the superscript ¢ has been introduced to emphasize the approximate nature of this result. This
point will be discussed at the close of this section. Now let us visualize that all the constraints are released so

Gl = (4)

JEETRRTRRR

Fig. 2. A double cantilever sandwich beam carrying an interfacial crack.



S. Sridharan | International Journal of Solids and Structures 38 (2001) 6787-6803 6791

that the crack surfaces becomes traction free. This completes the Sequence I. (The implications of the
release of constraints will be discussed in the next section.)

Let us now consider the complementary sequence of steps, Sequence II, which will yield a similar es-
timate of SERR in mode II, Gfj. Though the procedure followed is similar, we state it here to introduce the
notation that will be useful later on.

(v) Return to Model 1. The crack tip is now conditioned over the same length 5 downstream of the crack
to suppress the opening mode, by setting the relative displacement in the y-direction between the delami-
nated surfaces to be zero, i.e. o = 0.

Compute the potential energy under this condition, IT; (State (v)).

(vi) Consider Model 2, with the crack conditioned likewise, but over the length b + Aa.

Compute the potential energy under this condition, IT5 (State (vi)).

Once again, Sequence II becomes complete when all the constraints are released so that the crack becomes
traction free.
The modal component Gf; is given by

(117 - 1m3)
Aa

We note here, the Sequences I and II by which G{ and Gf, are found respectively are two complementary
thought experiments. These are artificial processes of crack extension, but will later be found to be useful
ways of thinking about the total phenomenon. Note the computed G’s are displacement-based and are not
controlled by the crack-tip field stresses which are mesh-sensitive. This approach has been applied for de-
laminated laminates under compression and was found to be far more robust than the stress-based crack-
closure integrals especially for bi-material cracks. The former gives values which are mesh-dependent, while
the latter were convergent (Johnson and Sridharan, 1999). However the authors have acknowledged that
this method is approximate because of the constraints introduced during the process of conditioning a part
of the crack downstream of the crack tip. The effects of these constraints are not accounted for in the
calculations. Thus the approach involves an error which has not been quantified. Note also the dependence
of the results on the distance b over which the crack tip is conditioned has not been investigated. Hence the
superscript a, as mentioned earlier.

Gy = (4b)

1.2.3. J-integral

The pathindependent J-contour integral offers an alternative means of computing the total strain energy
release rate (Rice, 1968; Anderson, 1995). Since Gf and Gf; are the energy release rates with appropriate
constraints stipulated over a length » from the crack tip, J-integral can be used to evaluate the same
provided the contour meets the crack at a distance less than b. Such an approach has been used Johnson
and Sridharan (1999) in their evaluation of the modal components of G. Values thus obtained J{, Jj; were in
good agreement Gy and Gf, respectively. The evaluation of these parameters is based on numerical analysis
and actual experimentation is not contemplated at present.

2. New displacement based approach
2.1. Conceptual basis
2.1.1. Complementary mechanisms

State (iii) can be reached from State (i) by attaching mode II (shear) springs between the delaminated
surfaces over the length 5 from the crack tip and straining them till the relative displacements # vanish. The
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work done by the springs U, accounts for the difference in the potential energies of the two states and is
given by: UI(IU = f(f f()" Fjpditdx where Fj is the force in the shear springs. Thus we have:

m=ml —u (5a)

The second term in the right-hand side of Eq. (5a), is the strain energy in mode II stored in the springs
which when released, the model will revert to its unconstrained state (State (i)).
Similar correspondence exists between States (iv) and (ii). Thus we have

s = 11y — Uy (5b)

where Ul(l2 ) stands for the energies stored in shear springs connecting the delaminated surfaces over the
distance b + Aa downstream of the new crack tip.

The difference IT; — I1} represents the energy released in mode I while the difference UI(I2 ) — UI(II) is the
energy that is required to eliminate mode II during crack extension. This can be viewed as the mode II
energy that must be released after crack extension to achieve traction free crack surfaces, with the corre-
sponding SERR designated as G%. Thus we have:

(U - u)  {m—my— (- m)

b _
=" A Ab (5¢)
It is seen by a comparison of Egs. (3), (4a) and (5c¢), that
G=G'+ G (5d)

where G% is an estimate of mode IT SERR complementary to G¢ as found from Sequence 1.

This development is repeated for Sequence II, where the mode II action is restrained over the lengths b
and b + Ab respectively: State (v) can be reached from State (i) by attaching mode I (normal) springs over a
distance b from the crack tip and straining them till the relative displacements ¢ vanish. The work done by
the springs UI(1> accounts for the difference in the potential energies of the two states and is given by:

b v
UIU):/O /OFIdf;dx (6)

where £ is the force in the normal spring over the length 5. Thus we have:
1
1 = 11; - Uy’ (7a)

The second term on right-hand side represents energy stored in the normal springs as the relative v’s are
eliminated between the delaminated surfaces. Similar correspondence exists between States (vi) and (ii).
Thus we have:

m=m-u? (7b)

where the second term represents the energies stored in the normal springs over the distance b + Ab.

Once again, the difference UI(2> — UI“) is the energy stored in the normal springs that is required to
eliminate mode I during crack extension. This can be viewed as the mode I energy that must be released
after crack extension to achieve traction free crack surfaces. With the corresponding SERR designated as

G?. Thus we have

(2 (1)
(v - 0") -y g )
Ab Ab
It is seen by a comparison of Egs. (3), (4b) and (7c¢), that

G =

(7¢)



S. Sridharan | International Journal of Solids and Structures 38 (2001) 6787-6803 6793

G=G{+G (7d)

where G¢ and G? are estimates of mode I and mode IT SERR’s respectively as found from Sequence II.

2.1.2. Linear combination of the mechanisms

In so far as Sequences I and Il are complementary process of constrained crack extension and subse-
quent release of constraints, the actual process of crack extension should be separable into these processes.
(This separation is generally possible provided b is sufficiently large and does not approach zero — a point
discussed later in the paper.) Thus the actual fracture process can be viewed as a linear combination of the
two processes. Thus linearly combining Egs. (5d) and (7d), we have:

G =n(G{ + Gyp) + (1 —n)(Gj; + GY) (8)
where 7 is as yet unknown. Rearranging,

G = {nG{ + (1 =mGi} + {(1 - n)Gj; + nGy } )
Identifying the first term and the second term on right-hand side as Gy and Gy respectively, we have

G = {nG{ + (1 —n)G}} (10a)

Gu = {(1 = n)Gj; +nGj } (10b)
In view of Egs. (5d) and (7d), these equations can be written in the form:

G = {nG{+ (1-n)(G-G})} (10c)

Gu = {(1 =n)Gj; +n(G - G})} (10d)

From Eq. (9) it is clear that G; and Gy add up to G.

2.1.3. Determination of n

In Egs. (10c) and (10d), n can be a function of b, but G; and Gy must be independent of b. Thus we can
differentiate Gy and Gy with respect to b as many times as may be warranted and equate the derivatives to
zero. Thus we have

G, . a6 &G
T e Ul 7= =0; andsoon (11)
Since Gy = G — Gy and G is independent of b, it follows:
dGy d*Gy d’Gy
= M = M = : 12
b 0; i D 0; and soon (12)

Thus we need to deal with either Eq. (11) or Eq. (12). Differentiating both sides of Eq. (10c) and making use
of Eq. (11) we have

nf +n'f=y (13a)
nﬁl/+2n/ﬁ/+n//ﬁ:,yl (13b)
and so on

In the foregoing,
=G +G; -G (14a)
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_dp_dGy | dGy

F=w%="a " (140)
g — % (14c)
)= di% (14d)
Y = % (14e)
n = % (14f)
n' = % (14¢)

Thus n and its derivatives can be obtained if the derivatives of Gf and Gf; are available. This calls for an
appropriate integration scheme, which is described in the sequel.

In the present study, we restrict ourselves to the first two of the equations in the sequence, viz. Egs. (13a)
and (13b) as we anticipate the lower order derivatives to be dominant over the higher order ones. The origin
is taken at the mouth of the crack, A and the x-axis along the upstream direction of the crack. We select
four equispaced station points (A, B, C and D) including the origin (Fig. 1(b)) distant b,, b,, b3 and b,
respectively from the crack tip, (a = b;). If the corresponding x-coordinates are x;, X, X3, x4, then
x; =a— b;. G and Gf; are evaluated on these points with b set equal to ;.

It is easily seen that the rate of change of G{ and Gf; must be zero at A, as removing the constraining
springs for a infinitesimally short distance from A can affect the neither the stress distribution nor the
energy content in the models from St. Venant’s principle. (This statement is also verified by several nu-
merical examples run by the author.) Thus f and y are both zero at A. Thus ' = 0 at A from Eq. (13a)
applied at A. In order to proceed further, we assume that the variation of n over the length AB (= s) in the
form of a Hermitian cubic polynomial in terms of the values of n at A and B and »’ at B:

n=m(1=30+2) +mGr —2) + nhs(—n” + 1) (15)

Here n; and n, are the values of n at A and B respectively, ) is dn/dx (= —dn/db) at B and 5 = x/s. This
expression is used to express »n” in terms of n;, n, and n, at y =0,1 (i.e. A and B). Forward difference
formulae are used to express the derivatives of G{ and G{; at A and B in terms of their values at A, B, C and
D respectively. Thus the first and second derivatives of a certain function f (which may be G{ or Gf;) at A
can be expressed in terms of the values of fat A, B and C.

(i),

de [, s
{dz_f} _Je=2fs+/fa
de? [, 52

Similar expressions can be written down for the derivatives at B in terms of the values of fat B, C and D.
Thus we set up three equations, invoking Eq. (13b) at A and Eqgs. (13a) and (13b) at B. The solution of these
equations gives the values of n; and n, at A and B. Egs. (10c) and (10d) then gives G; and Gy;.

The choice of s requires care. It is recommended that the greater of the changes in Gf and Gf; over the
length of 4s must be of the order of 1% of G. Too small a change will result in poor results as the resulting
equations would then tend to be near-singular and local blips and noises would contaminate the solution;
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on the other hand too large a variation will reduce the accuracy of the solution. These points will become
apparent by a study of numerical examples presented.

2.1.4. Numerical implementation

For the calculation of Gf and G}, selective constraints have to be applied between the nodes across the
crack; and further there must be facility for changing the length of the crack, ¢ and the length over which
the constraints are applied, b. To this end, independent nodes are defined at the top and bottom faces of the
entire plane containing the crack. Over the closed uncracked portion the corresponding nodes are tied by
two constraints (displacements in two perpendicular directions are set equal to each other for the nodes);
and over the portion b, only one of the displacement components is matched. (vide Abaqus Users’ manual,
Version 5.8, Chapter 20). This arrangement makes it easy to change both a and b.

3. Illustrative examples and discussion

We consider a small number of examples in order to explore the validity and the robustness of the
proposed approach.

3.1. Example of a double cantilever beam (homogeneous material)

Consider the double cantilever sandwich beam specimen, fixed at one end and carrying equal and opposite
forces (P = 10 N) at the extremities of the free edge shown in Fig. 2. The crack length, «, is taken as 25.5 mm.

The dimensions of the specimen are shown in the figure. The specimen is in general, a sandwich beam, a
composite made up of isotropic materials, with differing properties for the facing sheets (Er, v) and the core
(E.,v) respectively. In order to examine the validity of the new approach, we consider the material to be
homogeneous and set Ex = E. (E; = 70000 MPa, vy = v, = 0.33). In all the cases the crack extension Aa was
set equal to, the mesh size (%), i.e. the size of the element in the axial direction at the crack tip. Compu-
tations were carried out using eight-noded bi-quadratic plane strain elements (CPES) available in Abaqus
(1998).

Table 1 gives the values of G¢ and G% obtained for a certain mesh size () and s. It is seen that these values
remain nearly constant for a certain distance, but then rise sharply towards the crack tip. The computed
values of n at A and B and the corresponding values of Gy and Gy are also shown. It is seen that the latter
values are very close as expected. Table 2 gives the results obtained using stress-based crack-closure inte-
grals (G| and G,) and the present displacement-based approach (G; and Gy) for three different values of
h. The total SERR, G, (= G1 + G,) and G, (= Gy + Gpy) given the stress-based and displacement-based
approaches is almost the same. The values of the modal components given by either of the two approaches
(Gy and G, based on crack-closure integrals and G; and Gy as given by the present approach) are not
palpably sensitive to mesh refinement — a variation of about 3% being observed over the range of 4 from
0.75 to 0.1 mm. The values of stress-based G| and G, agree quite closely with Gy and Gy within a 1-2%. It
must be noted however, the values of G; and Gy can vary slightly depend upon the type of integration used

Table 1

Typical results for the homogeneous double cantilever problem (z = 25.5 mm, 4 = 0.1 mm)
Location x (mm) b (mm) Gy Gy n n Gy (N/mm) Gy (N/mm)
A 0.0 25.5 0.20177 0.18 x 10710 0.5497 0.0 0.3456 0.1756

B 8.4 17.1 0.20177 0.354 x 1077 0.5515 0.426 x 1072 0.3451 0.1761
C 16.8 8.7 0.20385 0.102 x 10~
D 25.2 0.3 0.32310 0.14155
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Table 2

SERR (N/mm) for the homogeneous double cantilever for varying mesh size
h (mm) G G G, Gn
0.75 0.3622 0.3559 0.1727 0.1749
0.25 0.3516 0.3475 0.1717 0.1758
0.10 0.3505 0.3453 0.1708 0.1758

and therefore not much significance must be attached to this discrepancy. It is felt that the values Gy and Gy
given by the present approach are not exact in any sense of the term but are sufficiently accurate for practical
applications.

Table 1 offers a comparison between the values of the approximate displacement-based modal com-
ponents of G, viz. G and G{; and the corrected values, G; and Gy, for four different values of b. It is clear
that the approximate values can vary over a wide range depending on b — something not reported by
Johnson and Sridharan (1999). For the smallest value of b, the approximate values are still in error in excess
of 10%.

It is clear that the present procedure is computationally expensive and obviously not warranted for
cracks in homogeneous media. However the example lends credence to the new approach and the concepts
on which it is based.

3.2. Bi-material crack under mode I loading: Sun’s problem

Sun and Jih (1987) considered the problem of a rectangular plate made by joining two rectangular halves
each of which is made up of a material different from the other. The plate carries a crack located at the
center, along the interface of the two materials (Fig. 3). The material properties are given as E; and v; for
material 1 and E, and v, for material 2 respectively.

Go2

Eyv £ (1)
0(1) Nl v . o %114
11 2in. T
Ll L 1
) 1
E,, v £ 2)
0(2) » 2» Y2 p 11
11 -
«— 10 in.—»{«—10in. >
y
4; v v v y
O
: L N :
G,y =1 psi 11 =1psi E,=1psi
v, =v,=0.3 E,=10E, plane stress

Fig. 3. Geometry, material properties and loading conditions for a square panel with a central crack along the bi-material interface.
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The plate carries uniform normal stress ¢, applied at the boundaries parallel to the crack, and uni-
form stresses aﬁll) and Gﬁ) in parts (1) and (2) respectively, in the perpendicular direction; the ratio of these
stresses is so computed that the transverse strains ¢;; will be the same in the two plates in the uncracked
plate. Only one half the plate is analyzed because of symmetry. For mode separation analysis by the present
approach, we set b = a, 3a/4, a/2 and a/4 respectively for the calculation of G¢ and GY;. The calculations
were repeated for several values of 4 (with Aa = h) to study the convergence of the solution. Eight-noded
plane stress elements (CPS8) were employed in the analysis.

Fig. 4 shows the present results along with those of Sun and Jih. The present model gives results which
gently oscillate over a small range, but the results do give a much higher value for Gy and correspondingly a
small value for Gy; consistently. The results do make sense as in this problem there is little tendency for
shearing stresses to develop at the interface. The result given by the stress-based approach for very refined
meshes, is Gy = Gy; which is clearly counter-intuitive.

Table 3 illustrates computational features of the problem for a certain value of 4, viz. 0.01 in. It is
interesting to see that while G{ decreases with b slightly, GYf; increases from zero to a value which is of
the order of 1% of G over the range considered. The table also values of J’s computed for crack lengths
of a and a + Aa respectively, for every b considered. These values of G’s lie right in between these values
of J.

Once again it is clear the proposed approach is computationally expensive for routine applica-
tions. However the results given by this approach are close to those given by crack-closure integrals for

18

Ay A 4 A
16 X
*'*"'x """""" D S f%
14 T
c
S Mean GI
©
: 104
- —— G1 (Sun and Jih)
O s —i— G2 (Sun and Jih)
— —&— G (Sun and Jih)
o 6] % X GI (Present)
O \\ A GII (Present)
4 \ Mean
2
AA B R A """""""""" 7/ \9 800000000000 0000000HD0000000000000000000 A
0 : : : ‘
0 0.025 0.05 0.075 01
Mesh size, in
Fig. 4. The strain energy release rate and its components versus mesh size.
Table 3 ~
Typical results for Sun’s problem: # = 0.01 in., G = 0.1669 x 1072
b(mm)  Gf x107? Gi x 1072 Jix 1072 Ji x 1072 n dnldb Gy Gy
1.0 0.16127 0.0 0.1605/0.1621 0.0 2.59 0.0 0.1523  0.0146
0.75 0.16126 0.155 x 10~ 0.1605/0.1621  0.155 x 1074/0.155 x 10™*  2.60 0.07 0.1523  0.0146
0.5 0.16113 0.288 x 1073 0.1603/0.1620  0.293 x 1073/0.283 x 1073

0.25 0.16010 0.208 x 1072 0.1593/0.1610  0.213 x 1072/0.203 x 1072
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2.2mm

|t
20.0 mm
4

Y—facﬁg
< 2.2mm 152.4 mm >

Fig. 5. A “tilted sandwich beam” specimen carrying a load P acting at an angle of 4°.

a relatively coarse mesh — the results that are thought to be close to reality (Sun and Jih, 1987; Rice,
1968).

3.3. Bi-material crack exhibiting mode-mixity

A sandwich specimen with the same geometry as in example 1 is selected. The modulus of elasticity of the
core material is taken as 1% of that the facing sheet (E;/E. = 0.01, Er = 70,000 MPa, vy = v. = 0.3), to
provide a strong bi-materiality to the specimen. A crack of 25.5 mm length is considered between the facing
sheet and the core. The bottom of the specimen fully restrained and a tensile load of 25 N acting at an in-
clination of 4° to the axis of the specimen, is applied at the top tip of the delaminated portion of the facing
sheet. (Fig. 5) The angle is so chosen as to avoid contact between the delaminated surfaces and to provide a
sizeable mode-mixity. Note that similar specimens have been used by Li and Carlsson (1999) in their ex-
perimental investigation of interfacial fracture toughness.

Fig. 6 shows the variation of G, Gy and Gy, as obtained by the stress-based and the present displacement
approaches respectively. A spectrum of mesh sizes near the crack tip is considered, from # = 0.025 to 0.75
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0007 | e—e—a— ® v

G-d
0.006 x\"\x\x\
/!

0.005 - é,

0.004 1 . >/
00034 ®
Gy

Strain Energy Release Rates, N/mm

0.002 |
0.001 | //T//
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
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mesh size (= crack extension), mm

Fig. 6. Variation of G| — G, and Gy — Gy with mesh size.
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Table 4
Typical results for the tilted sandwich problem: 7 = 0.05 mm, G = 6.9992 x 103
Location X (mm) b (mm) G x 1073 Gy x107°  n n G x 1073 Gn x 1073
(N/mm) (N/mm) (N/mm) (N/mm)
A 0.0 25.5 2.9860 2.2452 0.54 0.0 3.801 3.198
B 6.0 19.5 2.9891 2.2703 0.55 0.00344 3.781 3.218
C 12.0 13.5 3.0650 2.2833
D 18.0 7.5 3.3692 2.5221

mm. For all calculations, we set Aa = h. For the calculation of the displacement-based Gy and Gy, we select
A, B, C, D at a spacing, s = 6 mm. Table 4 gives the typical data obtained for certain value of 4 (= 0.05
mm).

It is clearly seen from the Fig. 6, in the range of mesh refinement considered viz. the stress-based G; and
G, show no tendency to converge, though the total G is clearly convergent and agrees with the displace-
ment-based G completely. On the other hand, the displacement-based G; and Gy change very little with
mesh refinement and provide consistent values.

Fig. 7 shows the values of G{ and G{, obtained using a fine mesh (h = 0.05 mm) for various values of b.
The corrected values, Gy and Gy are also indicated alongside. The former do differ significantly from the
latter and vary rapidly as 5 = 0. In this range, the rates of change of G and Gj; are roughly equal and
opposite to each other and Gf and G¢ sum up to G. This would make both 8, 8 = 0 rendering Eqs. (13a)
and (13b) nearly singular. Though it is not certain that such behavior is typical at the crack tip in every
bi-material problem, it is recommended no station points at which n and »’ is evaluated (i.e. A and B)
should be defined too close to the crack tip.
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0.001
0
0 5 10 15 20 25
b, mm

Fig. 7. Variation of G¢ and G% with respect to b (mesh size # = Aa = 0.05 mm).
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Fig. 8. (a) Geometry and loading of Beuth’s [9] test case #1. (b). Geometry and loading of Beuth’s [9] test case #2.

Table 5

Graphite-epoxy ply properties used in test cases (all modulii are in 1b/in?)
Elastic constants Values
Ey 19.5 x 10°
Eyn = Ey; 1.48 x 10°
G[z = G]3 0.80 x 106
G23 0.497 x 106
Vo = U13 030
U3 0.49

Note: Subscripts 1, 2 and 3 refer to the direction along the fiber, the inplane direction transverse to the fiber and the out-of-plane
direction normal to the fiber respectively.
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Fig. 9. (a) Mode-mixity ratio (Gy;/Gy) versus normalized crack extension length for test case #1. (b) Mode-mixity ratio (Gy/Gy) versus
normalized crack extension length for test case #2.

3.4. Beuth problem of layered orthotropic composites

Beuth (1996) investigated two problems which are shown in Fig. 8(a) and (b) and these will be referred to
as test cases #1 and #2 respectively. The two cases consist of plane strain drop-ply configurations of 0° and
90°, 0.005 in. thick graphite epoxy plies. The displacements are fully constrained on the left edge in each
case. On the right-hand side a lateral concentrated load of P (taken as 120 1b, in the calculations) is applied
at the bottom tip of the bottom ply. The properties of the plies with respect to their material principal axes
are given in Table 5.
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The results obtained for the two cases are plotted in Fig. 9(a) and (b) respectively. The results are in the
form of ratios of G,/G; obtained by crack-closure integrals, the present displacement-based approach
(Aa = h, s varying from 0.1 to 0.2 mm) and Beuth’s technique of mode separation, all plotted with respect
to the nondimensional mesh size, & /h, where h = 0.125 and 0.1 in. for the two test cases respectively. The
crack-closure integrals as obtained by the somewhat simple mesh configuration of the present study and the
more elaborate one of Beuth give substantially the same results. However the values of modal ratio Gy/Gy
as given by the present approach are very different from those of Beuth. The essential concept involved in
Beuth’s approach is to extract and eliminate the oscillatory part of stress variation near the crack tip in the
computation of the SERR. This approach does lead to a consistent projection of the components of SERR,
but the validity of the results is by no means established. On the other hand, the displacement based ap-
proach has a clear physical meaning and it is therefore believed that it gives the correct values of the modal
components of G. Note once again the mode-mixity given by the stress-based approach and the present
displacement-based approach respectively are close to each other, provided the mesh employed is not
unduly refined.

4. Conclusions

A new displacement-based technique of mode separation of strain energy release rate, G, of interfacial
crack growth is presented. The method is applicable for bi-material cracks for which the crack-closure
integrals are, in principle, not applicable. The method does correct for the deficiencies in an earlier and
simpler presentation of the same. The modal components thus determined do add up to the total value of G
and are derived by insisting Gy and Gy are independent of b. The method does not depend explicitly on the
stress-distribution at the crack tip, is by and large insensitive to mesh refinement and gives results which are
in accord with physical intuition. From the examples studied, a mesh size of 5% of the crack length appears
sufficient for the evaluation of the modal components.

The method, however, is computationally expensive as it requires the calculation of the approximate
values of the modal components at at least four selected station points along the crack line. Perhaps, the
most interesting conclusion of the investigation is that the modal components thus found do not differ
substantially from those obtained from crack-closure integrals obtained using a relatively coarse mesh.
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